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Abstract— RGB-T tracker possesses strong capability of fus-
ing two different yet complementary target observations, thus
providing a promising solution to fulfill all-weather tracking in
intelligent transportation systems. Existing convolutional neural
network (CNN)-based RGB-T tracking methods often consider
the multisource-oriented deep feature fusion from global view-
point, but fail to yield satisfactory performance when the target
pair only contains partially useful information. To solve this
problem, we propose a four-stream oriented Siamese network
(FS-Siamese) for RGB-T tracking. The key innovation of our
network structure lies in that we formulate multidomain multi-
layer feature map fusion as a multiple graph learning problem,
based on which we develop a graph attention-based bilinear
pooling module to explore the partial feature interaction between
the RGB and the thermal targets. This can effectively avoid
uninformed image blocks disturbing feature embedding fusion.
To enhance the efficiency of the proposed Siamese network struc-
ture, we propose to adopt meta-learning to incorporate category
information in the updating of bilinear pooling results, which
can online enforce the exemplar and current target appearance
obtaining similar sematic representation. Extensive experiments
on grayscale-thermal object tracking (GTOT) and RGBT234
datasets demonstrate that the proposed method outperforms the
state-of-the-art methods for the task of RGB-T tracking.

Index Terms— Bilinear pooling, meta-learning, RGB-T track-
ing, Siamese network.

I. INTRODUCTION

W ITH the flourishment of multimedia, thermal infrared
camera has become economically affordable. Such

camera can capture the thermal infrared radiation emitted by
the targets with temperature above absolute zero, and hence is
suitable for night surveillance. For this reason, two advantages
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Fig. 1. Challenging scenario in RGB234 dataset, where the car is seriously
occluded. It is very difficult to discriminate the car from the background in
thermal image. Besides, there also exists MB caused by RGB camera jitter.
In this case, only a little useful yet partially matched information can be used
for the complement of RGB and thermal target appearance. (a) RGB image.
(b) Thermal image.

have been identified in jointly using RGB and thermal infrared
cameras.

1) Thermal infrared camera is skilled in resisting illu-
mination change, which can offer strong support to
RGB camera under poor light condition.

2) RGB camera would help solve the crossover challenge
suffered in thermal infrared camera-based surveillance.
Therefore, RGB-T tracking with both RGB and ther-
mal features can effectively tackle the bad weather
challenge [1].

In RGB-T tracking, the RGB and thermal video sequences
are obtained in pairs (see Fig. 1). The key idea is to exploit
the complementarity of the RGB and thermal information for
efficient multimodel fusion. To this end, many state-of-the-
art methods have been developed over the past decade, which
can be briefly categorized into three classes. The first class
is the particle fusion-based RGB-T tracker, which requires
effective representation of the appearance variation of the
RGB and thermal targets for the estimation of particle fusion
weights [2], [3]. The second one is to build multiple graph
fusing model to effectively exploit the spatial relation between
the RGB and the thermal target blocks [4], [5]. The third-class
benefits from sparse representation, where the sparse codes
and the correlation between two sparse representation models
can be simultaneously estimated through solving the unified
optimization problem [6]–[8]. All of aforementioned methods
use handcraft feature for multimodel fusion. Compared with
handcraft feature, deep convolutional neural networks (CNN)
can extract the translation and light invariant deep semantic
information for robust representation of the target. Thus,
deep learning technology has appeared to have great poten-
tial in RGB-T tracking recently. For example, Zhu et al. [9]
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Fig. 2. Pipeline of our FS-Siamese, which is consisted of three components: 1) feature embedding; 2) graph attention-based bilinear pooling module for
generating reinforced exemplar and candidate; 3) inner product for calculating the similarity between reinforced exemplar and each reinforced candidate within
the search region. There have three scales for the online appearance changes. The first innovation of FS-Siamese lies in that we formulate a multiple graph
learning problem to integrate GACN, outer product and fully convolutional layers into a unified end-to-end network structure. The second innovation is to
design a meta-learning strategy for online updating reinforced exemplar.

proposed a dense CNN for RGB-T tracking, which can
recursively aggregate informative features of two kinds of
convolutional paths (RGB image-oriented convolutional path
and thermal image-oriented convolutional path). In [10],
a multiadapter convolutional network is proposed to simul-
taneously explore the complementarity property and achieve
instance-aware feature learning in an end-to-end manner.

Existing CNN-based RGB-T trackers often consider the
multilayer convolutional feature maps as the hierarchically
holistic feature, ignoring the partial feature interaction between
the RGB and thermal targets. This may obviously reduce
tracking accuracy in challenging video pairs such as in Fig. 1,
where only a little useful information can be extracted from
RGB or thermal video sequences for representing pairwise
targets. What’s worse, the little useful information on the
RGB and thermal targets may be partially matched or even
unmatched in spatial domain. In this case, simply treating
multiple deep features as holistic feature for multimodel
fusion may result in inevitable negative effect. Part-feature-
based RGB-T trackers such as [4], [5] can achieve partial
information fusion according to the importance of different
image blocks. However, those methods pay attention to the
handcraft feature only, which could not be easily extended to
multiple convolutional network fusion.

In this article, we propose a simple yet efficient four-stream
oriented Siamese network (FS-Siamese) for RGB-T tracking
as shown in Fig. 2, where the feature embedding of four
streams can be divided into exemplar embedding pair and
candidate embedding pair. Two embedding pairs can be fused,
respectively, through the graph attention-based bilinear pooling
module for generating the reinforced exemplar and reinforced
candidate, which are used to produce the subsequent similarity
map. Bilinear pooling has shown superior performance over
traditional linear fusion strategy on the fusion of heteroge-
neous partial information in fine-grained recognition [11] and
visual question answering [12]. Although bilinear pooling has
won a certain performance gain, it could not discriminate the

importance of the elements in the deep feature maps. This may
give rise to unavoidable negative effect when facing challeng-
ing scenarios such as in Fig. 1. In view of these observations,
we introduce coattention mechanism in the bilinear pooling
to formulate multimodel pooling as a multiple graph learning
problem. Based on the new problem formulation, we develop a
graph attention-based bilinear pooling module to integrate two
tasks, namely the exploration of partial feature interaction and
the fusion of multisource oriented feature embeddings, into a
unified end-to-end network structure.

Since the target appearance may dramatically change, it is
necessary to introduce an effective strategy in updating the
graph attention-based bilinear pooling module. The state-
of-the-art updating strategies such as [13]–[15] only focus
on exploring the temporal correlation between the current
and previous target appearance, while ignoring a fact that
online exploring the spatial relation between the target and
its surrounding background is very important for locating the
most similar candidate pairs. Considering this issue, we design
a meta-learning-based updating strategy to effectively update
the fully connected layer of the graph attention-based bilinear
pooling module. This paves a way on utilizing category infor-
mation to online update semantic representation of exemplar.
The main contributions of this article are listed as follows.

1) We formulate the attention-based bilinear pooling as a
multiple graph learning problem, based on which we
integrate the graph attention network and outer product
into a unified structure to highlight the discriminative
local information in RGB and thermal targets. This can
effectively eliminate the disturbance in target pair fusion.

2) Traditional multiple stream-oriented tracking networks
only fuse the target regression results of different
streams, without exploring the pairwise relation during
the fusion of target embeddings. To overcome this
limitation, we propose a four-stream oriented network
structure using graph attention-based bilinear pooling for
the effective fusion of multisource embedding pairs.
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3) We adopt meta-learning to update the graph attention-
based bilinear pooling, and thereby utilize the category
information to online restrict the exemplar to learn
a similar semantic representation as current tracking
result, which is helpful for discriminating the reinforced
exemplar and reinforced candidates.

4) Extensive experiments on grayscale-thermal object
tracking (GTOT), RGBT234, CUB-200-2011, fine-
grained visual classification (FGVC)-aircraft, and Cars
datasets show that our graph attention-based bilinear
pooling module not only can effectively fuse multido-
main multilayer feature maps in RGB-T tracking, but
also can be extended to other multimodel fusion tasks.

II. RELATED WORKS

A. Siamese Network in RGB Tracking

Siamese network has popular in RGB camera-based visual
tracking due to its simple network structure and fast
tracking speed. In Siamese network-based RGB tracking,
Bertinetto et al. [16] is the pioneer who designs the Siamese
network structure, where the tracking result is obtained by
orderly calculating the similarity between the exemplar embed-
ding and each candidate embeddings within the search region.
The cross correlation is often used as the similarity mea-
sure. Following Bertinetto’s work, the following studies have
emerged which can be briefly divided into three scenarios.

1) The attention-based Siamese networks (e.g., [13], [17])
that effectively use the gradient of backward propagation
and the channel attention mechanism to make the target
appearance embedding concentrate on the informative
subregion.

2) The local pattern-based Siamese Networks
(e.g., [18]–[20]) that can explore the spatial relation
between different target blocks.

3) The region proposal network (RPN)-based Siamese net-
works (e.g., [21]–[23]) that introduce RPN in Siamese
network to avoid the time-consuming multiscale estima-
tion step.

Unfortunately, all of aforementioned works cannot be easily
extended to RGB-T tracking because of the following two
main challenges.

1) The state-of-the-art RGB trackers have explored relation
among different target blocks and introduced attention
mechanism in the Siamese network, however those
works are carried out in RGB domain. It is seen in
Fig. 1 that there is a big gap between RGB and thermal
images. Thus it not only requires the RGB-T tracker to
explore the spatial correlation between target blocks in
a single image domain, but also requires to overcome
image gap challenge to effectively locate informative
target blocks for exploring the partial feature interaction
between two image domains.

2) We should not sacrifice the simple Siamese structure for
exploring the partial feature interaction between RGB
and thermal targets. Hence it requires to find a tradeoff
between the complexity of the multimodel fusion and
the efficiency of the network structure.

Similar to our network structure, the work in [24] introduced
Siamese network in RGB-T tracking. However it still adopts

linear fusion strategy to make RGB and thermal target feature
complement with each other, ignoring theoretically study how
the effective extract the common and the specific information
between two image domains for unlinear fusion. Although the
RGB tracker in [25] also has four embedding paths, it only
fuses the tracking results of different streams, while ignoring
the pairwise relation during feature embedding.

B. Bilinear Pooling
After the work in [26] that used multimodal compact

bilinear pooling to explore the pairwise relation between
two heterogeneous models, bilinear pooling has become an
effective tool in visual question answering (VQA). Since
the dimension of the output bilinear vector in [26] is high,
Kim et al. [27] proposed a low-rank bilinear pooling to use
two online estimated projection to project bilinear vector into
a low-rank subspace, in which the redundant information
in bilinear vector can be obviously reduced. Besides VQA,
bilinear pooling has also been widely used in face recognition
and fine-grained recognition, e.g., Chang et al. [28] proposed
a Compound Rank-k Projections (CRP) algorithm for bilinear
analysis, where the 2-D handcraft feature-based discriminant
projections can be simultaneously learned in a collaborative
way. Lin et al. [11] proposed a bilinear CNN model to use
outer product to effectively fuse the pairwise fine-grained
target information between two kinds of CNN networks.
Wei et al. [29] used bilinear pooling to explore the partial
feature interaction between two fine-grained models.

Unlike aforementioned works, we introduce graph attention
CNN in bilinear pooling to simultaneously locate the infor-
mative target blocks in RGB-thermal image pairs. Although
Gao et al. [30] has also used graph CNN in visual tracking,
this work use predefined affinity matrix to build the graph.
Our work is more challenging than the work in [30] because
it requires to adaptively estimate multiple affinity matrices
without any prior knowledge.

C. One Shot Learning
One shot learning aims to study the ability of using a single

class example to recognize novel categories. The representative
works include [31]–[33], and so on. Since meta-learning
methods own the capability of learning to learn, it has become
a useful tool for achieving one shot learning. For example,
Gidaris and Komodakis [34] used meta-learning to learn the
mapping function between classification weight and seman-
tic feature vectors for one shot recognition. Li et al. [21]
introduced meta-learning-based one-shot detection module in
Siamese network for adaptive scale estimation. Similar to
our work, Dong et al. [35] also introduced one-shot learning-
based classification in visual tracking. However, this work
could not realize real-time updating because it adopted triplet
loss that may not guarantee a fast convergence. In contrast,
we design a meta-learning strategy to rapidly learn optimal
classification parameters without much experimental setting
involved.

III. PROPOSED APPROACH

A. Overview

The network structure of our four-stream oriented Siamese
network is shown in Fig. 2, where the network contains
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four embedding streams. Two streams are used for embedding
the target exemplar (target template) pair Z1 and Z2. And
the other two streams are used for embedding the candidate
pair (x1

i and x2
i ) within the search regions. After feature

embedding, the exemplar embedding pair and the i th candidate
embedding pair are, respectively, fused in a reinforcement
way through graph attention-based bilinear pooling. This
can yield a reinforced target appearance representation for
the inner product calculation. It is noted that in traditional
Siamese networks, the accuracy of the target location relies
on the cross correlation between the exemplar and target
candidates. In contrast, our network structure can give a
more accurate similarity calculation result. The reason for
that is we fully exploit the inherent partial feature interaction
existing in the multisource embedding pair through adopting
graph attention-based bilinear pooling module. Section III-B
introduces the graph attention-based bilinear pooling module
in detail. Before introduction, we summarize the notation of
main mathematical symbols as follows.

1) Xt is the video frame at time t . In the proposed network,
X1

t and X2
t means the video frame in RGB and thermal

image domains, respectively. For simplicity, the sub-
script t can be omitted. The i th candidate pair extracted
from X1 and X2 are denoted as x1

i and x2
i .

2) F denotes the feature map tensor obtained from CNNs.
The reshaped feature map tensor is denoted as F̃ and the
projection result of feature map tensor is F̂.

3) V is the bilinear pooling results. Notation V with a
subscript in the follow up section indicates the inputs
of Siamese networks. Specifically, the bilinear pooling
of exemplar pair is denoted as Vz , while the bilinear
pooling of i th candidate pair is Vxi . The reduced dimen-
sional vector of Vz and Vxi are denoted as V̂z and V̂xi ,
respectively.

4) Q denotes similarity matrix in Siamese network
structure.

B. Graph Attention-Based Bilinear Pooling

The deep CNN has acquired remarkable achievement in
visible spectrum camera-based classification. However, for
RGB-T tracking, the state-of-the-art network structures often
use linear pooling, e.g., concatenation or element-wise addi-
tion, to fuse multilayer multichannel feature maps, which may
not make the target fusion result sufficiently expressive to
capture the complementary advantages among isolate targets.
Above limitation arises from the fact that the deep feature
maps are considered as holistic features, and the intrinsic
elementwise interaction between different feature maps cannot
be fully explored. Bilinear pooling is a promising module that
can overcome the limitation of linear pooling because it uses
outer product to explore pairwise correlation between feature
channels. Suppose we have obtained two domain feature map
tensors F1 ∈ R

N×K×C and F2 ∈ R
N×K×C (N and K are the

length and width of a single feature map, and C indicates the
number of the feature map channels). After using outer product
to multiply the locations of the two tensors and pooling all
products together, we can finally obtain the bilinear vector
V ∈ R

C2×1. Since a single element in feature map corresponds
to a certain block in original images, if considering the

target block as local pattern, the outer product in bilinear
pooling can actually explore the structural relationship among
local patterns in two image domains. In this way, we can
use conditional partial information to represent the target
appearance. Reformulating tensors F1 and F2 in matrix form

F̃
1 ∈ R

N K×C and F̃
2 ∈ R

N K×C , the bilinear pooling vector
can be formulated as

V = bilinear
(
F̃

1
, F̃

2) = vec
((

F̃
1)T

F̃
2)

(1)

where F̃
1 = [f̃1

1, . . . , f̃
1
i , . . . , f̃

1
C ] and F̃

2 = [f̃ 2
1 , . . . , f̃

2
i , . . . , f̃

2
C ],

and the (( j − 1)C + i)th element in vector V is denoted as
V( j−1)C+i = (f̃

1
i )

T f̃
2
j . bilinear (·) indicates the bilinear operator.

Each element in vector f̃
1
i (or f̃

2
j ) indicates the conditioned

local pattern representation for an image block. Equation (1)
implies each local pattern representation has equal importance,
while ignoring a fact that the contribution of the columns in
F̃

1
and F̃

2
for multimodel fusion are actually varied. Taking

Fig. 1 as an example, there exist only a few image blocks
that contain useful yet matched information in RGB-thermal
pair. The uninformative image blocks would severely degrade
the pooling performance. Thus it is of crucial importance to
discriminate the contribution of image blocks. From this obser-
vation, we design a graph attention-based bilinear pooling
module to exploit coattention mechanism [36]. Specifically,
the element of V is reformulated as

V( j−1)C+i = (
f̃
1
i

)T
Wi j f̃

2
j (2)

where the coattention weight matrix Wi j is aimed to indicate
the correlation between elements in vectors f̃

1
i and f̃

2
j . Based

on this design, we can highlight those elements in f̃
1
i and f̃

2
j

that yield informative yet matched information.
The motivation of this article is to integrate the target

embedding, coattention weight matrix estimation, and feature
embedding fusion into a unified end-to-end network structure.
To achieve this purpose, the proposed graph attention-based
bilinear pooling module combines graph attention convolu-
tional network (GACN) and outer product together, which can
effectively utilize message passing to locate the informative
image block in both RGB and thermal images with low-
computational complexity. The problem formulation for the
proposed graph attention-based bilinear pooling module is
described as follows.

Based on matrix decomposition, Wi j can be decomposed
into

Wi j = PT Di j P (3)

where Di j is the diagonal matrix, which can be further decom-
posed into two diagonal matrices Di j = (Si)

T S j . Defining
Di = Si P, D j = S j P. Based on this definition, taking (3)
into (2), we can obtain

V( j−1)C+i = (
f̃

1
i

)T (
Di

)T
PT PD j f̃

2
j = (

Pi f̃
1
i

)T (
P j f̃

2
j

)
. (4)

From (4) we can see that Pi = PDi . Defining f̃
1
i = PT f̂

1
i ,

we can obtain

Pi f̃
1
i = (

PDi PT
)
f̂
1
i . (5)
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Di is the square matrix, it can be further decomposed.
Based on this observation and suppose P is the eigenvector
of Laplacian matrix, (PDi PT )f̂

1
i can be considered as the

graph convolution. Similarly, D j can also be updated using

graph convolution. Based on above analysis, let G(F̂
1
, Â

1
)

and G(F̂
2
, Â

2
) be the attributed graphs for the RGB and

thermal feature map tensors, respectively, where the rows
in F̂

i
(i = 1, 2) are denoted as the nodes in the i th graph

and Â
i

is the adjacent matrix which encodes the pairwise
similarity between nodes pairs. The bilinear pooling-based
multiple graphs learning problem is formulated as

V = bilinear
(
G

(
F̂

1
, Â

1)
, G

(
F̂

2
, Â

2); �
)

(6)

where graphs G(F̂
1
, Â

1
) and G(F̂

2
, Â

2
) can be learned by

graph CNNs, � = {�1,�2} is defined as the parameter set
of graph CNNs, bilinear(·) means the bilinear operator that
uses outer product to dynamically aggregate two graph CNNs.
Traditional graph CNN often use predefined adjacent matrices
for the single graph learning. In (6), due to challenging
factors such as occlusion and thermal crossover (TC) and so
on, the graph nodes correlation in different image domains
dynamically changes, thus it is extremely difficult to simul-
taneously predefine the suitable adjacent matrices Â

i
. Here,

we build GACN for achieving graph learning without any
prior knowledge. Specifically, we simplify (5) as

Pi f̃
1
i = σ

(
�k∈N (i)η(i, k)f̂

1
k

)
(7)

where η(i, k) denotes the weight of the edge between nodes i
and k, σ(·) is the activation function, N (i) denotes neighbor
set of node i . Based on (6), we adaptively learn η(i, j) to
estimate Pi f̃

1
i . Similarly, P j f̃

2
j can be estimated in the same

way. Similar to [37], the weight η(i, k) for G(F̂
1
, Â

1
) is

calculated by

η(i, k) = exp
(
LeakyReLU

(
βT

[
Uf̂

1
i

∣∣∣∣Uf̂
1
k

]))

�s∈N (i) exp
(
LeakyReLU

(
βT

[
Uf̂

1
i

∣∣∣∣Uf̂
1
s

])) (8)

where β denotes the parameter vector of the single-layer
feedforward neural network and U is the parameter matrix
that indicates the relation between Ã and Â. Different from
traditional graph attention methods, U is to learn the normal-
ized row-wise representation of coattention matrix, which can
use pairwise information from the other image domain to give
a restriction to the estimation of attention weights, avoiding
static attention [38] drawback. ‖ is the concatenation operator,
and LeakyReLU(·) is the activation function.

C. Updating Strategy

In this article, we would like to reformulate the updating
of graph attention-based bilinear pooling results as a one
shot learning problem. This intuition is derived from an
observation: the tracking result of the current frame is actually
the positive sample. Those candidates that have less similarity
with exemplar can be considered as the negative samples.
No matter what dramatic changes the current candidates have
suffered, the exemplar and current tracking result should still

have the same category. Based on this observation, we can
incorporate the category information in the online updating
of V̂z (V̂z is the fully connected layer after yielding the
bilinear vector of exemplar pair). Specifically, we define the
kth classification score of V̂z at the first frame as sk , where
sk = (V̂z)

T Mk , with Mk denoting the weight vector for the
kth classification. Inspired by Gidaris and Komodakis [34],
we introduce parameter vector φ in the classification. In this
case, the kth classification score after the first frame is changed
as sk = (V̂z � φ)T Mk , where � denotes Hadamard product.
Based on this definition, we can adopt meta-learning to online
learn φ for the fine-tuning of V̂z . The detailed fine-tuning
process is achieved using the category information to enforce
V̂z� φ to be similar to the bilinear vector of positive candidate
pair. Aforementioned strategy is helpful for enhancing the
capability of discriminating the exemplar and background.

To achieve meta-learning, we define the i th candidate pool-
ing result V̂xi that is most similar to V̂z as positive sample c1,
while the j th candidate pooling result V̂x j that has lowest
similarity with V̂z is defined as the negative example c2. The
loss for the online training of φ is defined as

J (φ) = − logP(
y = 1|V̂z

)
(9)

where P(y = 1 | V̂z) is defined as

P(
y = 1 | V̂z

) = exp
(−‖ fφ

(
V̂z) − c1‖2

)
∑2

k=1 exp
(−‖ fφ(V̂z) − ck‖2

) . (10)

It should be noted that the motivation of the meta-learning
strategy in [34] and our meta-learning are quite different,
i.e., [34] adopts meta-learning to train parameter vector φ

for fine-tuning classification weight matrix Mk . Its aim is
to recognize new categories. In contrast, we adopt φ to
fine-tuning semantic representation for template updating.

D. Inner Product-Based Logistical Loss

As it is shown in Fig. 2, the outputs from two graph attention
bilinear pooling modules are defined as bilinear vectors Vz

and Vxi . The dimension of Vz and Vxi are all 65536, thus we
apply two fully connected layers after obtaining Vz and Vxi .
This can reduce the dimension of Vz and Vxi to 256, making
them yield dense feature representation. The final outputs
of the two graph attention bilinear pooling modules are V̂z

and V̂xi . Since the exemplar and candidate pooling results are
not the matrices as that in traditional Siamese network, we use
inner product to measure the similarity between V̂z and V̂xi .
Defining Q(V̂z, V̂xi ) as a similarity score in similarity map,
the final similarity map is represented as

Q =

⎡
⎢⎢⎣

Q1 Q2 . . . Q√
k

Q√
k+1 Q√

k+2 . . . Q2
√

k
. . . . . . . . . . . .
. . . . . . . . . Qk

⎤
⎥⎥⎦ (11)

where for the sake of simple expression, let Q(V̂z, V̂xi ) = Qi ,
and Qi is the i th element in matrix Q. The point with highest
similarity score indicates the location of the target. After
locating the highest similarity score, we can use interpolation
to find the bounding box of the target in the search area.
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Fig. 3. Detailed chain rule.

Similar to traditional Siamese network, we adopt the logistic
loss to train the network with positive and negative sample
pairs. The loss function is defined as

L = 1

|D|
∑
i∈D

log
(
1 + exp

( − Yi Qi
))

(12)

where D is a set that contains all the shifting positions on the
search image. Qi is the similarity score of the i th reinforced
exemplar-candidate pair and Yi is the corresponding ground
truth label.

The parameters of the whole network architecture can be
trained by back-propagating the gradients of the loss function.
The output feature maps from GACN are defined as �1

z , �2
z ,

�1
xi

and �2
xi

. The detailed chain rule for our networks is shown
in Fig. 3.

IV. EXPERIMENTAL RESULT

To test the efficiency of our network structure, we have
carried out extensive experiments on two widely-used RGB-T
datasets: GTOT [6] and RGBT234 [39]. In these experiments,
we not only test the quantitative tracking performance but
also utilize serious ablation studies to test the effectiveness
of the graph attention-based bilinear pooling module and the
updating strategy. Compared with state-of-the-art methods, our
FS-Siamese network can yield excellent performance on both
datasets as shown below.

A. Datasets and Evaluation Matrices

GTOT Dataset contains 50 grayscale-thermal video pairs
with seven kinds of challenges: Occlusion (OCC), large scale
variation (LSV), fast motion (FM), low illumination (LI), TC,
small object (SO), and deformation (DEF).

RGBT234 Dataset contains 234 grayscale-thermal video
pairs with 12 kinds of challenges: scale variation (SV),
FM (Fast Motion), LI, TC, DEF, none occlusion (NO), partial
occlusion (PO), heavy occlusion (HO), motion blur (MB),
camera moving (CM), low resolution (LR), and background
clutter (BC). The total frame number in this dataset is 210K
and the maximum number of frames in a single sequence
is 8K.

Evaluation Matrices: Referring to [40], the quantitative
evaluation is carried out by three objective measures, namely
position plot, success plot, and success rate.

1) Precision Plot indicates accumulated position errors
under different location error thresholds, where the posi-
tion error is defined as the Euclidean distance between
the central location of the tracked bounding box and the
manually labeled ground truth.

2) Success Rate is defined as the number of video frames
when the overlap score is larger than 0.5. The over-
lap score is defined as area(BT ∩ BG)/area(BT ∪ BG),
where BT denotes the bounding box of the tracked target
in current frame, and BG is the corresponding ground
truth.

3) Success Plot reflects the accumulated success rates
versus different overlap thresholds.

B. Implementation Details

In our FS-Siamese, we use VGG-16 as backbone for feature
embedding. The bounding box of the first frame is predefined
as the exemplar and the size of exemplar pair z1 and z2 are
112 × 112. The search regions X1 and X2 are resized to
224 × 224. Inspired by Qi et al. [41], we use the feature maps
from four convolutional layers (9, 10, 12, 13th layers) to carry
out graph attention-based bilinear pooling, where all feature
maps are resized to 14 × 14. The number of feature maps
in each layer is 512. We concatenate four-layer feature maps
together to build the graphs for exemplar and candidate pairs.
Specifically, there are two kinds of graphs for the bilinear
pooling of the exemplar pair (or candidate pair), and we
consider each grid of the concatenated feature maps as the
node of the undirected graph [42], and the total number of
the nodes in a single graph is set to 196. The size of the
bilinear vector is 65 536×1. We adopt two fully convolutional
layers to reduce the size of bilinear vector. The size of the
first fully convolutional layer is 512 and the size of the final
convolutional layer is 256. The size of the similarity map
is 17 × 17.

We adopt the adaptive momentum (ADAM) optimizer with
learning rate of 0.01. The weight decay is set to 5e − 4.
The model is trained for 50 epochs with a batch size of 64.
In the training process, we first use videos from the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC2015)
dataset [43] to train the FS-Siamese. Then, we fine-tune the
two thermal embedding paths using the first five frames of
thermal video sequences in RGBT234. Exponential linear units
(ELU) [44] is used in two fully convolutional layers after
bilinear vector as the nonlinear activation function. In online
tracking, we follow [16] to choose three scales for the
current target appearance with scale factors of 1.05{−1, 0, 1}.
We update the scale by linear interpolation with a factor of
0.68 to provide damping.

Baselines: Existing trackers mainly focus on using RGB
video sequence to carry out visual tracking. By compari-
son, our tracking method adopts RGB-thermal video pairs to
exploit the complementarity of the RGB and thermal targets.
The selected competitors include: discriminative scale space
tracker (DSST) [45], multi-task sparse learning (MTT) [46],
multiple experts using entropy minimization (MEEM) [47],
spatially ordered and weighted patch (SOWP) [48], inverse
nonnegative local coordinate factorization (INLCF) [49], ker-
nelized correlation filter (KCF) [50], continuous convolution
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Fig. 4. Overall tracking performance on GTOT dataset: (a) precision plot
and (b) success plot. The distance precision score and AUC score are shown
in the legend of precision and success plots, respectively. This can indicate
the performance of different trackers in precision plot and success plot more
clearly.

operators for visual tracking (C-COT) [51], efficient convo-
lution operator (ECO) [52], multi-cue correlation filters for
robust visual tracking (MCCT) [53], hierarchical convolu-
tional feature (HCF) [54], MDnet [55], CFnet [56], joint
sparse representation (JSR) [57], channel and spatial reliability
(CSR) [6], cross-modal ranking (CMR) [58], sparse represen-
tation regularized graph tracking (SGT) [4], graph convolu-
tional tracking (GLT) [39], cross-modal pattern-propagation
(CMPP) [59], and self-SDCT+RGB [60]. In those competi-
tors, JSR, CSR, CMR, SGT, GLT, and CMPP are the state-
of-the-art RGB-T trackers. Beside of RGB-T trackers, other
competitors are RGB camera-based trackers. It should be
noted that all of RGB camera-based competitors are extended
to RGB-thermal version for fair comparison. Specifically,
we stack the RGB and thermal features into a single vector for
traditional handcraft-based RGB trackers (e.g., MTT, MEEM,
and INLCF). Meanwhile, we consider the thermal video
sequence as an extra channel in the correlation filter and deep
learning-based trackers (e.g., C-COT, ECO, MCCT, MDnet,
HCF, and CFnet). The original RGB trackers that have been
extended to RGB-T version are given annotation “+RGBT.”
Since ECO is a representative RGB tracker, we also compare
our method with this method to test the tracking performance
between two-model fusion and a single model-based trackers.
The original RGB tracker is given annotation “+RGB.”

C. Quantitative Tracking Experiments

1) GTOT Dataset:
a) Overall performance: The overall tracking perfor-

mance on GTOT dataset is shown in Fig. 4. We can clearly
see that our method gives the best precision performance.
Specially, the distance precision score of our method is higher
than ECO-RGBT by over 5%. Since ECO-RGBT involves
thermal information, its distance precision score is slight
higher than ECO-RGB. The tracking performance in Fig. 4(a)
can verify the effectiveness of the proposed fusion module.
It is seen from Fig. 4(b) that our method also gives the
highest the area under curve (AUC) score. Especially, the AUC
score of our method is higher than top RGB-T tracker CMR

by over 1%. This can illustrate that our method can use an
appropriate bounding box scale to locate the target.

b) Attribute-based performance: The position error only
measures the distance between key pixels, which could not
reflect the scale of the target. Comparing with position error,
the overlap score often gives more comprehensive evaluation
on tracking methods because it can evaluate the scale of target
bounding box. Thus, we use averaged overlap score to evaluate
the tracking performance of different method over seven
challenging factors (As seen from Fig. 5), the averaged overlap
score of our method in OCC, LSV, LI, and DEF scenarios
are higher than other 13 methods. This result can validate
our advantage that the graph attention-based bilinear pooling
module can explore the partial feature interaction between the
RGB and thermal targets. Beside OCC, LSV, LI, and DEF, our
method still gives top-2 overlap score in other three attributes,
which can illustrate that our method can locate the target with
an appropriate bounding box in various challenging scenarios.

2) RGBT234 Dataset:
a) Overall performance: The overall tracking perfor-

mance on RGBT234 dataset is shown in Fig. 6. RGBT234
contains much more video pairs and involves more challenging
factors than GTOT dataset. Thus, it can give a comprehensive
and convincing testing on the tracking performance. From
Fig. 6(a), we could clearly see that the distance precision score
of our method is obviously higher than other 13 comparing
methods. Similarly, our method also wins the first place in
the successful plot [see Fig. 6(b)]. Especially, the AUC score
of our method is higher than well-known deep learning and
correlation filter-based trackers such as multi-domain network
(MDNet)+RGBT and ECO+RGBT by over 1.5%. This can
give a strong support to validate the effectiveness of the
proposed network structure. Besides this test, we also give the
overall tracking performance on RGBT210 dataset in Fig. 7.
RGBT234 dataset is the extension of RGBT210 dataset. From
Fig. 7, we could clearly see that our method still win the top
place when comparing with other methods.

b) Attribute-based performance: The precision plots over
12 challenging factors are shown in Table I. From this test
we could clearly see that our method wins the first place in
most challenging factors. Specifically, HO is very challenging
because there only a few useful information can be extracted
from the RGB and thermal targets. Due to this reason, state-
of-the-art tracking methods such as ECO, CMR, and GLT
give poor tracking performance in this scenario. Different from
traditional methods, the success rate of our method is higher
than top method CMPP over 10%. Beside of HO, BC, CM,
Fast Motion (FM), LI, and PO are often be considered as
the challenging scenarios that can be used as the represen-
tative tests to verify the tracking accuracy. Obviously, our
method can also enhance the success rate over 6% when
comparing with CMPP. Since the thermal target appearance
would be seriously disturbed in TC, pooling module may
suffer more negative effect when exploring the block relation.
Due to this reason, the holistic deep feature-oriented tracker
(ECO+RGBT) gives the best success rate. From the testing
results in Table I, we can give a confident conclusion that our
method can effectively use graph attention-based bilinear pool-
ing module to enhance the tracking performance in challenging
scenarios.
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Fig. 5. Mean value of overlap score over different video subsets in GTOT dataset. We select top5 methods in overall tracking performance as competitors.

TABLE I

MEAN VALUE OF SUCCESS RATE OVER DIFFERENT VIDEO SUBSETS IN RGB-234 DATASET.
THE BEST TWO RESULTS ARE DENOTED AS AND RED AND BLUE

Fig. 6. Overall tracking performance on RGBT234 dataset: (a) precision plot
and (b) success plot. The distance precision score and AUC score are shown
in the legend of precision and success plots, respectively. This can indicate
the performance of different trackers in precision plot and success plot more
clearly.

D. Qualitative Tracking Experiments

Here we show the qualitative tracking performance in Fig. 8,
where three video sequences are randomly selected from each
scenario. The moving target is often occluded by the tree trunk
in diamond sequence. State-of-the art methods often lose the
target after serious occlusion. From Fig. 8(a), we see that
our method can still follow the target no matter the partial
or HO. The target and adjacent pedestrians move together,

Fig. 7. Overall tracking performance on RGBT210 dataset: (a) precision plot
and (b) success plot. The distance precision score and AUC score are shown
in the legend of precision and success plots, respectively. This can indicate
the performance of different trackers in precision plot and success plot more
clearly.

causing serious BC in Fig. 8(b). In this scenario, our method
can do the same as ECO-RGBT that gives a good tracking
performance. In kite sequence, other methods would begin to
drift in some extent after the 300th frame, while our method
can still track the kite in whole video frames [Fig. 8(c)].
It contains severe haze in Fig. 8(e). Besides this challenging
factor, it also involves occlusion and BC in Fig. 8(e). From this
test, we observe that our method can still use an appropriate
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Fig. 8. Qualitative results on six video pairs: (a) diamond video pair; (b) Elecbike3 video pair; (c) Kite4 video pair; (d) Manafterrain video pair; (e) Fog
video pair; and (f) Nightthreepeople video pair.

Fig. 9. Qualitative example of RGB-T tracking result in kite sequence pair.
Tracking result of (a) RGB image and (b) thermal image.

bounding box to locate the target appearance, while the scale
of CMR has dramatically changed when facing occlusion. Kite
sequence is a very challenging sequence because the target is
really small. Fig. 8(d) and (f) suffer LI in raining and night
scenarios. From the two examples, we can see that our method
can effectively use the thermal information to complement the
RGB sequences.

TABLE II

DETAILED ABLATION SETTING

Detailed Discussion: Here we take kite sequence pair as
example to show the advantage of our method in more detail.
Kite sequence is very challenging because the target is small
with a long tail. From the local enlarged image in Fig. 9,
we can see that the tail of the kite is immersed in the
background in both RGB and thermal images. Especially
in thermal image, there exists only a few pieces of useful
information for the representation of the kite appearance. From
the comparison between top-3 tracking results in Fig. 9, we can
get a conclusion that our method can effectively use the
partial information in RGB and thermal target to guarantee
the tracking accuracy.
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TABLE III

FPS PERFORMANCE ON DIFFERENT RGB CAMERA-BASED TRACKERS

Fig. 10. Ablation test on GTOT dataset: (a) precision plot and (b) success
plot.

Fig. 11. Ablation test on RGBT234 dataset: (a) precision plot and (b) success
plot.

E. Ablation Study

1) Ablation on Graph Attention-Based Bilinear Pooling
Module: Graph attention-based bilinear pooling module is
the core in our FS-Siamese network, which mainly con-
tains three components: GACN, outer product, and updating
module. In this test, we carry out ablation study on GTOT
and RGBT234 datasets to show the effectiveness of different
components. The detailed experiment setting is shown in
Table II. From Figs. 10 and 11 we can see that the precision
and success plots on two datasets indicate the effectiveness of
our graph attention-based bilinear pooling module.

2) Effectiveness of GACN: GACN is the key point in
graph attention-based bilinear pooling, which can highlight
the important image blocks through exploring partial feature
interaction. In this section, we design a fine-grained classifi-
cation test to show the effectiveness of GACN. Specifically,
we add GACN at the end of Conv layers of multi-attention
(MA)-CNN network [61]. In this way, the target embedding
would pay more concentration on informative target block.
The estimated subregion masks in Fig. 12(c) and (d) can
indicate the effectiveness of GACN. For example, although
the resolution of the local enlarged images in the first and
third rows are low, MA-CNN+GACN can still locate the
informative subregion [see Fig. 12(c)]. In contrast, the original
method may involve uninformative background noise in the
mask [see Fig. 12(d)].

3) Generality of Graph Attention-Based Bilinear Pooling
Module: B-CNN [11] is a well-known method in fine-
grained recognition that can use bilinear pooling to fuse

Fig. 12. Informative subregion location test. (a) Testing image, (b) local
enlarged image, (c) estimate masks using MA-CNN+GACN, and (d) estimate
masks using MA-CNN. MA-CNN can divide the multiple feature channels
into four clutter for generating four subregion masks. Images (b) and (c) are
obtained from the second clutter.

Fig. 13. Fine-grained recognition for testing the generality of GACN.

feature maps of two network structures. Here we extend our
graph attention-based bilinear pooling module to this method,
namely, “B-CNN+GACN,” for verifying the generality of
the key innovation of FS-Siamese. The testing is carried out
on three fine-grained recognition datasets: CUB-200-2011,
FGVC-aircraft, and Cars. From Fig. 13 we could clearly see
that B-CNN+GACN can obviously enhance the recognition
accuracy over 3% when comparing when original B-CNN
methods.

F. Tracking Speed
In this test, we use the number of frames per second (FPS)

as the objective measure for evaluating the online tracking
speed. The FPS testing is carried out on computer workstation
with single NVIDIA GTX1060Ti GPU. It should be noted
that this test is carried out on RGBT234 dataset. Table III
gives the tracking speed comparison between our method
and RGB camera-based tracking methods. Since our method
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TABLE IV

FPS PERFORMANCE ON DIFFERENT RGB-T TRACKERS

1) involves two more VGG-16-based feature embedding paths
and 2) achieves updating at every frame when comparing
with traditional SimaFC, this may reduce the tracking speed
in some extent. We have also shown speed comparison
between our method and the state-of-the-art RGB-T trackers
in Table IV. Clearly, our tracking speed surpasses traditional
handcraft based RGB-T trackers.

V. CONCLUSION

In this article, we have proposed a four-stream oriented
Siamese network (FS-Siamese) to effectively fuse RGB and
thermal information. Our network has benefited from the
proposed graph attention-based bilinear pooling module that
can adopt coattention mechanism to explore the partial feature
interaction between the RGB and the thermal targets. Besides,
we have adopted meta-learning to update the bilinear pooling
result, which can perform online updating on the spatial rela-
tion between the target and its surrounding background. Exten-
sive experiments on GTOT and RGBT234 datasets indicated
that the proposed FS-Siamese network can give a superior
performance as compared to the state-of-the-art RGB and
RGB-T trackers.
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